

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A Level In Mathematics Statistics S3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WST03_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

June 2018 WST03/01 Statistics 3 Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL I AL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2018 IAL - WST03/01 Statistics 3

Question			June	201		٧٧	0100	7013	ratio	1103	<u> </u>	Maules
Number		1			Sche	T	T	1			1	Marks
1. (a)	Football		<i>B</i>	<i>C</i>	D	E	F	G	H	I	_	
	Rank x	6	9	8	2	5	6	7	3	9		
	Rank <i>y</i> Rank <i>x</i>	9	8	7	6	5	4	3	2	1	_	M1
	Rank y	4	1	2	8	5	6	3	7	9	-	1411
	$\mathring{a} d^2 = 25 + 49 + 25 + 4 + 0 + 4 + 0 + 25 + 64 = 196$								<u></u>	M1 A1		
	$r_{\rm S} = 1 - \frac{6}{90}$	(996);=	- 0.633	33333.	or	$-\frac{19}{30}$						dM1; A1
												[5]
(b)		$0, H_1: \rho$	-									B1
	Critical V											B1
	Since $r_{\rm S}$ =			in the C	R (or	- 0.633	3 < - 0	.6), rej	ect H ₀			M1
		nclude that ussell's cl ootballers	<u>aim</u> is <u>t</u>		/II are s	slower					Conclusion in context	A1
												[4]
(c)	Both Critical Value $r = -0.5822$ /CR: $r \le -0.5822$ and does not lie in the CR /Result is not significant/Do not reject H ₀ (or accept H ₀)							M1				
	Conclude	that there	is <u>no n</u>	egative	correl	ation o	2			Conte	xt not required here.	A1
(d)	The relationship (between BMI and time taken to complete the obstacle course)								[2]			
	is non-linear oe									B1		
								4 37 .				[1] 12
1. (a)	1 st M1	Attemnt	to rank	data fo	nr r and		ast 5 co			(allow	reverse rankings)	
1. (a)	2 nd M1	•				•				`	ting $\mathring{a} d^2$	
												4.4
	1 st A1										+0+0+16+1+0=	= 44
	3 rd dM1	is depen	dent on	ı 1 st M1	for us	e of 1	$-\frac{6("19)}{9(9^2)}$	<u>6")</u> wi - 1)	th their	:åd²	2.	
	2 nd A1	awrt - 0	.633 or	$-\frac{19}{30}$	or fro	m reve	rse ranl	$\frac{1}{3}$	9			
(b)	1st B1	Both hyp	othese	s stated	in terr	ns of /	or $\rho_{\rm s}$					
	Note 2 nd B1	One tail Critical			mpatib	le with	their ra	ınking.				
	M1	For a con	rrect sta	atement	relatir	ng their	$r_{S}(r_{S})$	<1) v	vith the	ir c.v.	where their c.v. < 1	
	A1		ntextua	lised co	mmen	t which	is reje	cting H	I ₀ , whic	ch mus	t mention either "ne	gative
	Note	Follow t								1		
(c)	M1	Allow ± Use of -	0.5822	I	gnore l	hypothe				•		

Question Number				Scheme	;			Marks	
2. (a)	$\hat{p} = \frac{7(3) + 12}{12}$	8(5) + (3+5 +	9(18) + 100 18 + 28 + 1	(28) +11(17 17 + 4) or 1	$\frac{(1)+12(4)}{2(75)} = \frac{1}{2}$	$\left. \frac{738}{900} \right\} = 0.82 (*)$	Answer is given. See notes.	M1 A1cso [2]	
(b)	$r = 75^{-12}C_9(0.82)^9(0.18)^3 = 16.1296941$ (formula)								
	s = 75 - (2.80 + 7.97 + their r + 22.04 + 18.26 + 6.93)								
	r = 16.129	6941	; $s = 0.87$.	••		r = awrt 1	16.13; $s = \text{awrt } 0.87$	A1; A1	
(c)	H ₀ : Binom			,	or good) model le model	(or fit)		[3] B1	
	#	O_i	E_{i}	Comb O_i	$\begin{array}{c} \text{Comb} \\ E_i \end{array}$	$\frac{(O_i - E_i)^2}{E_i}$	$\frac{O_i^2}{E_i}$		
		0 3 5	0.87 2.80 7.97	8	11.64	1.1383	5.4983		
	9	18	16.13	18	16.13	0.2168	20.0868	M1	
	10	28	22.04	28	22.04	1.6117	35.5717	3.61	
	11	17	18.26	17	18.26	0.0869	15.8269	M1	
	12	4	6.93	4	6.93 Totals	1.2388 4.2925	2.3088 79.2925		
	$X^2 = awrt$	43			Tutais	7.2323	19.2923	A1	
	v = 5 - 1 - 1 = 3								
	$\chi_3^2(0.10) = 6.251 \Rightarrow \text{CR}: \ X^2 \geqslant 6.251$								
	[does not lie in the CR/not significant/Do not reject H ₀ /Accept H ₀]								
	Binomial distribution is a suitable model. A correct conclusion (context not required here) which is based on <i>their</i> X^2 -value and <i>their</i> χ^2 -critical value.								
					0 4	2 N		[7] 12	
2. (a)	M1	Δt le	ast 2 non ze	ero products	Question		sion for their method		
2. (a)	A1 cso				ith no incorrec				
(b)	M1					ssion) for finding eit	ther r or s.		
	A1; A1		wrt 16.13;						
(c)	1st B1					inomial at least once			
	1 st M1	Inclusion of 0.82 for p in hypotheses is B0 but condone in conclusion. 1st M1 For an attempt to pool 8, 7 and \leq 6 germinating seeds ONLY.							
	2 nd M1	For a		t the test sta	atistic, at least 2	2 correct expressions			
	1 st A1	awrt		- ir uricuted	2 d.p.)				
	2 nd B1ft	For tl	neir evaluat	ed <i>n</i> - 1 -	1. i.e. realisin	g that they must sub	tract 2 from their n .		
	3rd B1ft	For a	correct ft f	For their χ_k^2	(0.10), from th	eir degrees of freedo	om		
	Note	For 0	.10 signific	eance: $\chi_6^2 =$	= $10.645 \chi_5^2 =$	$9.236 \chi_4^2 = 7.779$	$y = \chi_2^2 = 4.605$		
	Final A1	Depe	ndent on th	ne 2 nd Meth	od mark only.				
) which is accepting			
	Note	No fo	ollow through	gh on their	hypotheses if t	ney are stated the wr significant, do not r	ong way round.		
	Note Note				12, 0.82) in co		сјскі П() .		
	11016	_ J11G		(., in . 0.				

Question Number		Scheme		Mar	ks
3. (a)	$\left\{\hat{m}_{x} = \overline{x} = \right.$	$= \frac{92.0}{20} \Rightarrow \overline{x} = 4.6 \text{ (cm)}$	4.6	B1	
	$\left\{\hat{S}_{x}^{2}=\right\}$	$s_x^2 = \frac{433.4974 - 20(4.6)^2}{20 - 1} = 0.541968 \text{ (cm)}^2$	Applies $\frac{a^2 - 20(\text{their } \overline{x})^2}{20 - 1}$	M1	
		20 - 1	awrt <u>0.542</u>	A1	
(b)	Combine	ed Sample: Mean = $\frac{92.0 + 142.5}{20 + 30} = 4.69$	4.69 Can be implied.	B1	[3]
	433	4974 + 689 5078 - 50(4 69) ²		M1;	
	$s^2 = \frac{433}{}$	$\frac{.4974 + 689.5078 - 50(4.69)^2}{20 + 30 - 1}; = 0.4734734694$	awrt 0.473 or 0.4735 (can be implied)	A1	
	$s \sqrt{0}$	0.4734734694	For use of $s/\sqrt{50}$	M1;	
	$\frac{1}{\sqrt{n}} = -$	$\frac{0.4734734694}{\sqrt{50}}; = 0.09731119868$	awrt <u>0.0973</u>	A1	
()		4.5 II 4.5		D 1	[5]
(c)	$\mathbf{H}_0: m = 1$	4.5 H ₁ : m > 4.5	Correct hypotheses	B1	
		0.71	their $\frac{4.69 - 4.5}{\frac{0.71}{\sqrt{50}}}$ or equivalent.	M1;	
		√50 ·······	awrt 1.89	A1	
	or p-valu	d c.v. $Z = 1.6449$ or CR: $Z \ge 1.6449$ the = awrt 0.029 or awrt 0.029 < 0.05	Critical value of 1.6449 or a correct probability comparison.	B1	
	[in the Cl	R/significant/Reject $H_0/0.029 < 0.05$]			
		e either is evidence to <u>support</u> the <u>farmer's claim</u> he <u>mean width</u> of duck <u>eggs</u> is <u>greater than 4.5</u> cm.	A correct conclusion which is rejecting H_0 in context and is based on <i>their</i> z-value and <i>their</i> critical value, where $ c.v. > 1$.	A1	
					[5]
		Question 3 Notes			13
		I)		
3. (a)	M1	Also allow M1 for applying $\frac{20}{(20-1)} \left(\frac{\sum x^2}{20} \right)$ - (their \bar{x}	(z) ² †		
(b)	1st M1	Also allow 1 st M1 for applying $\frac{50}{(50-1)} \left(\frac{\sum x^2 + \sum y^2}{20+30} \right)$	- $(\text{their } \overline{x}_{\text{comb}})^2$		
	Note	Award B1M1A1M1A1 for awrt 0.0973 which follow			
(c)	1 st M1 2 nd A1	Condone use of 4.6 for this M1 mark. Conclusion must refer to either "farmer's claim" oe of	or "mean width" and "eggs".		

Question Number					Scheme		Mar	·ks	
4. (a)	 H₀: Mean number of reported first-aid incidents per 1000 employees is the same at each warehouse. H₁: Mean number of reported first-aid incidents per 1000 employees is not the same. 								
	Warehous A B	B (1)(114)		19 9.5		Some attempt at using the correct formula to find their 5 expected values (expected number of incidents). Can be implied by at least one correct E_i .	M1		
	C D E	12 (3.8)(1 12 (3)(11 12 (2.2)(1 12	4)	36.1 28.5 20.9	5	All expected frequencies are correct.	A1		
	Observed 15 10 40 26 23	Expected 19 9.5 36.1 28.5 20.9 Totals	0.84 0.02 0.42 0.21 0.21 1.72	63 13 93	$ \frac{O^2}{E} $ 11.8421 10.5263 44.3213 23.7193 25.3110 115.72	.8421 At least 3 correct terms for .5263			
	$X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 114 = \text{awrt } 1.72$ awrt $\underline{1.72}$								
					$R: X^2 \geqslant 9.48$		B1		
	Conclude eitl mana that t incid		s <u>supr</u> nber o	o <u>orted</u> f reporte		A correct conclusion in context which is based on <i>their</i> X^2 value and <i>their</i> χ^2 -critical value.	A1 ft		
(b)	Select every {having chos selecting a ra	4 th record fro	ecord l		<i>C.</i>		B1 dB1	[7]	
								[2] 9	
					Question	4 Notes			

(a) SC 1

Expected values of 9.5 used

Expected values of 5.5 asea						
Observed	Expected	$\frac{(O-E)^2}{E}$				
7.5	9.5	0.4210				
10	9.5	0.0263				
10.5	9.5	0.1108				
8.6	9.5	0.0730				
10.4	9.5	0.0959				
	Totals	0.727				

Can score B1M1A0M1A0B1A1ft (5 out of 7)

SC 2

Expected values of 9.43... used

Observed	Expected	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$
7.5	9.43	0.3948	5.965
10	9.43	0.0345	10.6050
10.5	9.43	0.1275	11.7507
8.6	9.43	0.0617	7.9655
10.4	9.43	0.1114	11.5910
	Totals	0.729	47.877

Can score B1M1A0M1A0B1A0 (4 out of 7)

(b) Use of 3800 in part (b) is B0B0

Question Number		Scheme				
5.	95% CI fo	or m is $(30.612, 31.788)$; $c\%$ CI for m is	(30.66, 31.74)			
(a)	$\frac{2(1.96)s}{\sqrt{25}}$	= 31.788 - 30.612 = 1.176	$\frac{2"z"s}{\sqrt{25}} = 31.788 - 30.612$	M1 oe		
	V23		1.96	B1		
	$\left\{ \Rightarrow S = \frac{1}{2} \right\}$	$\frac{(1.176)(5)}{2(1.96)} \implies S = 1.5$	S = 1.5	A1		
				[3]		
(b)	$\frac{2z(1.5)}{\sqrt{25}} = 31.74 - 30.66 \left\{ = 1.08 \right\}$ $\frac{2z("1.5")}{\sqrt{25}} = 31.74 - 30.66$					
	$z = \frac{(1.08)(5)}{2("1.5")} \to z = 1.8$ $z = 1.8$					
	$\left \frac{c}{100} \right = 2(0.9641) - 1$					
	$\Rightarrow c = 92.8 \text{ (3sf)}$ awrt 92.8					
				[4]		
		Owasti	n 5 Notos	7		
			on 5 Notes			
5. (a)	M1	Also allow M1 (oe) for $31.2 + \frac{\text{their } 2.5}{\sqrt{25}}$	$= 31.778$, where $31.2 = \frac{30.612 + 31.778}{2}$			
(b)	1 st M1	Also allow M1 (oe) for 31.2 + $\frac{z(\text{their "1.})}{\sqrt{25}}$	$\frac{5"}{}$ = 31.74, where $31.2 = \frac{30.66 + 31.74}{2}$			
	1 st A1ft 2 nd M1 Note	For a correct (ft) expression using their values awrt 0.928 implies this mark Use of 1.6449 gives $\sigma = 1.787$ and lead	lue of σ ls to $z = 1.51$ and $c = 86.9$ (3sf) (M1A1)	ftM1A0)		

Question Number	Scheme	Marks
6.	Y has a continuous uniform distribution $[a-3, a+6]$	
(a)	$E(Y) = \frac{a+6+a-3}{2} \left\{ = \frac{(2a+3)}{2} \text{ or } a+\frac{3}{2} \right\}$	M1
	$Var(Y) = \frac{(a+6-a+3)^2}{12} \left\{ = \frac{81}{12} \text{ or } \frac{27}{4} \text{ or } 6.75 \right\}$ May be implied	M1
	$\overline{Y} \sim N\left(a + \frac{3}{2}, \frac{9}{80}\right)$ $N\left(a + \frac{3}{2}, \frac{9}{80}\right)$	A1
		[3]
(b)	$13.4 - 2.3263\sqrt{\frac{9}{80}} < m < 13.4 + 2.3263\sqrt{\frac{9}{80}}$ $\frac{13.4 \pm "z"(\text{their } SE_{\bar{y}})}{2.3263}$	M1
(0)	$13.4 - 2.3263\sqrt{\frac{1}{80}} < 111 < 13.4 + 2.3263\sqrt{\frac{1}{80}}$ 2.3263	B1
	$13.4 - 2.3263\sqrt{\frac{9}{80}} < a + \frac{3}{2} < 13.4 + 2.3263\sqrt{\frac{9}{80}}$	
	$13.4 - 2.3263\sqrt{\frac{9}{80}} + 4.5 < a + 6 < 13.4 + 2.3263\sqrt{\frac{9}{80}} + 4.5 $ $13.4 \pm "z" \text{(their } SE_{\bar{y}}) + 4.5$	M1
	17.11973576 < a + 6 < 18.68026474 awrt $(17.1, 18.7)$	A1
		[4]
	Alternative Method for part (b)	
(b)	$13.4 - 2.3263\sqrt{\frac{9}{80}} < m < 13.4 + 2.3263\sqrt{\frac{9}{80}}$ $\frac{13.4 \pm "z"(\text{their } SE_{\bar{y}})}{2.3263}$	M1
(0)	100 100	B1
	11.11973526 < <i>a</i> < 12.68026474	
	$11.11973526 + 6 < a + 6 < 12.68026474 + 6$ $13.4 \pm "z" (their SE_{\overline{y}}) - 1.5 + 6$	M1
	17.11973576 < a + 6 < 18.68026474 awrt $(17.1, 18.7)$	A1
		[4]
		7
	Question 6 Notes	1
(b)	1 st M1 The inequalities may be seen separately. For only considering 1-tail of confidence inte (usually the upper tail) allow access to 1 st M1 only (so M1B1M0A0 is possible). A second division of their <i>SE</i> by 60 is 1 st M0	rvai

Question Number	Scheme	Marks					
7. (i)	$A = N(21, 2^2)$, $B = N(32, 7^2)$ and $C = N(45, 9^2)$ A, B, C are independent.						
(a)	T = A + B + C						
	$E(T) = 21 + 32 + 45$ or $Var(T) = 2^2 + 7^2 + 9^2$ A fully correct method of finding $E(T)$ or $Var(T)$	N 1 1					
	E(T) = 98 and $Var(T) = 134$ Both $E(T) = 98$ and $Var(T) = 134$	A1					
	{So <i>T</i> ∼ N(98,134)}						
	$\left\{P(T > 90) = \right\} P\left(Z > \frac{90 - 98}{\sqrt{134}}\right)$ Standardising (±) with their mean and their standard deviation	I IVI I					
	= P(Z > -0.69109)						
	= 0.7549 (or 0.75525) awrt 0.755						
(b)	$\left\{ P(A > B) = P(A - B > 0) \right\}$	[4]					
1	$E(A-B)=21-32$ or $Var(T)=2^2+7^2$ A fully correct method of finding $E(A-B)$ or $Var(A-B)$						
	E(A - B) = -11 and $Var(A - B) = 53$ Both $E(A - B) = -11$ and $Var(A - B) = 53$	A1					
	{So A - B N(-11,53)}						
	$\left\{ P(A-B>0) \right\} \Rightarrow P\left(Z > \frac{0-11}{\sqrt{53}} \right)$ Standardising (±) with their mean	M1					
	$\{\Gamma(A-B>0)\} \rightarrow \Gamma(Z> \frac{1}{\sqrt{53}})$ and their standard deviation						
	= P(Z > 1.510966)						
	$= 0.06539855 \frac{1}{4} \text{ (or } 0.0655)$ \text{\text{0.0655}} \text{ or awrt } \text{\text{0.0655}}	A1					
		[4]					
(ii)	$\left\{ P\left(X_{1} > \overline{X} + kS\right) = 0.1 \ \triangleright \ P\left(X_{1} - \overline{X} > kS\right) = 0.1 \right\}$						
	$X_{1} - \bar{X}; \left\{ = X_{1} - \frac{(X_{1} + X_{2} + X_{3} + X_{4})}{4} = \frac{3X_{1} - (X_{2} + X_{3} + X_{4})}{4} \right\}$ For attempting to find the distribution of $X_{1} - \bar{X}$	M1					
	$E(X_1 - \overline{X}) = 0$ Correct mean	A1					
	$E(R_1, R_2) = 0$	7 1 1					
	$\operatorname{Var}(X_{1} - \overline{X}) = \frac{9\sigma^{2} + 3\sigma^{2}}{4^{2}}; \implies X_{1} - \overline{X} \sim \operatorname{N}(0, 0.75\sigma^{2}) \xrightarrow{\text{Correct expression for } \operatorname{Var}(X_{1} - \overline{X})} X_{1} - \overline{X} \operatorname{N}(0, 0.75S^{2})$	Al					
	$\left\{ P\left(X_1 - \overline{X} > kS\right) = 0.1 \Rightarrow P\left(Z > \frac{kS - 0}{\sqrt{0.75S^2}}\right) = 0.1 \right\}$						
	Standardising using their $\sqrt{\operatorname{Var}(X_1 - \overline{X})}$						
	So, $\frac{k}{\sqrt{0.75}} = 1.2816$ Note that S must cancel and equating to a z-value, $ z > 1$	M1					
	1.2816						
	$\left\{k = \sqrt{0.75} \text{ (1.2816)}\right\} \Rightarrow k = 1.109898157$ awrt <u>1.11</u>						
		[7] 15					
	Question 7 Notes	13					
7. (i) (a)	1 st M1 Can be implied by either a correct $E(T)$ or $Var(T)$						
(i) (b)	Allow equivalent method using $B - A < 0$						
(ii)	Final Dependent upon all previous M marks in (ii) A1						

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom